# **2014 Annual Report**

for the

# Agricultural Demonstration of Practices and Technologies (ADOPT) Program



Project Title: Reclamation of Saline Soil using Perennial Forages

# Project Number: 20130305

**Producer Group Sponsoring the Project:** Western Applied Research Corporation

Project Location: AAFC Scott Research Farm (NE 17-39-21 W3, RM 380)

#### Project start and end dates: July 2013 – December 2014

#### Project contact person & contact details:

Laryssa Grenkow, Research Manager laryssa.grenkow@warc.ca 306-247-2001

#### **Objectives and Rationale**

#### **Project Objectives**

The objectives of this forage demonstration, originally established in 2011, was to determine

- 1. How various species of perennial forages establish under various levels of soil salinity
- 2. How much biomass the forages produced in each area of the salinity gradient, after three years of growth
- 3. If the established forages reduced the soil salinity levels in the demo area i.e. provided soil reclamation benefits over three years of growth

#### **Project Rationale**

Saline areas of arable annual crop land are of concern for many Saskatchewan farmers. Saline areas are spatially and temporally variable; the magnitude of area affected and severity of salinity depend on inherent landscape hydrology and differences in seasonal precipitation and soil moisture, all which affect the local water table and movement of soluble salts in the soil profile. Soils within a field with high concentrations of soluble salts can negatively impact establishment, growth and yield of many crops. In addition, persistent salt tolerant weeds, such as kochia or foxtail barley, often invade saline areas of the field, affecting the productivity of the rest of the field by acting as a weed seed source. Establishing a perennial forage in saline areas may not only supress weeds, but also provide valuable source of forage for livestock. Because perennial forages generally use more water throughout the growing season compared to an annual crop forages may provide soil reclamation benefits by lowering the local water table, reducing the risk of developing or enlarging saline areas. Farmers who have attempted to establish perennial forages in the saline areas often have mixed results in terms of successful establishment, competitiveness with weeds and forage biomass production. It is important farmers select appropriate perennial forage varieties to suit their unique soil salinity level and requirements for forage production.

#### **Methodology and Results**

#### Methodology

This project was originally established in 2011 (ADOPT 20100302). The demonstration includes ten treatments (Table 1) arranged as a randomized complete block design with three replicates. Plot size was two meters wide by approximately 25 meters long. Plots were established perpendicular to the salinity gradient ensuring all plots would transect both non-saline and saline soil.

Glyphosate was applied to the trial area prior to seeding. Alfalfa treatments were seeded on October 17, 2011 and all other forage treatments were seeded on October 18, 2011. Alfalfa treatments received 62 kg  $P_2O_5$  ha<sup>-1</sup> as triple super phosphate, side-banded, and appropriate inoculants were applied to the seed prior to seeding. Grass species treatments receive 45 kg  $P_2O_5$  ha<sup>-1</sup> and 9.5 kg N ha<sup>-1</sup> as monoammonium

phosphate, side-banded. An in-crop herbicide (Basagran Forte 0.91 L/ac) was applied to all treatments May 31, 2012. To manage excess forage biomass, all plots were swathed (August 8, 2012 and May 15, 2014) and forage biomass was removed.

| Treatment | Perennial Forage                    | Salinity Tolerance | Seeding Rate (kg/ha) |  |
|-----------|-------------------------------------|--------------------|----------------------|--|
| 1         | Alfalfa c.v. Rambler                | Low                | 9                    |  |
| 2         | Alfalfa c.v. Halo                   | Moderate           | 9                    |  |
| 3         | Alfalfa c.v. Rugged                 | Moderate           | 9                    |  |
| 4         | Tall fescue c.v. Kokanee            | Moderate           | 9                    |  |
| 5         | Tall wheatgrass                     | High               | 13                   |  |
| 6         | Smooth brome c.v. Carlton           | Moderate           | 9                    |  |
| 7         | Creeping foxtail                    | High               | 6                    |  |
| 8         | Saline Master <sup>z</sup>          | High               | 11                   |  |
| 9         | Green wheatgrass c.v. AC Saltlander | High               | 11                   |  |
| 10        | Hybrid wheatgrass c.v. NewHy        | High               | 11                   |  |

| Table 1: Perennial forage | variety, relative salinit | y tolerance and seeding rate |
|---------------------------|---------------------------|------------------------------|
|                           | ,                         |                              |

<sup>2</sup>Saline Master is a blend of 40% green wheatgrass (*c.v. AC Saltlander*), 30% tall fescue, 20% smooth brome, 10% slender wheatgrass

Soil salinity mapping was conducted using an EM38 on July 13, 2011 and June 3, 2014 to detect differences in salinity over time. Photographs of the forage treatments were taken in 2012 and 2014. Two 0.25m<sup>2</sup> forage biomass samples were taken from the non-saline, slightly saline and moderately saline areas of each plot at the end of July in 2012 and July 11 in 2014. Weeds were removed from the samples. Fresh weights of the biomass were recorded in 2012 and dry weights recorded in 2014; therefore, results will be presented as a percentage of biomass from the non-saline area within each plot to assess the changes in treatments between sampling dates.

#### Results

#### 2012 Forage Biomass

The perennial forage species differed in their ability to colonize saline areas. Overall, the alfalfa species were poor colonizers of the saline areas. While *c.v. Halo* and *c.v. Rugged* alfalfa maintained a greater percentage of their biomass than *c.v. Rambler* in the slightly saline areas, all three varieties were very poor colonizers in the moderately saline areas (Table A.1). Tall wheatgrass, *AC Saltlander* and creeping foxtail were the best colonizers in both slightly- and moderately saline areas, maintaining biomass yield throughout the salinity gradient (Table A.1). *Saline Master* and *NewHy* were also able to maintain biomass production in the slightly saline areas, but had a large reduction in biomass production in the moderately saline areas (Table A.1). Of all grass species tested, establishment of tall fescue and smooth brome were least consistent across the salinity gradient (Table A.1). In terms of total forage biomass production, tall fescue and *Saline Master* had the highest biomass production in non- and slightly-saline areas, while creeping foxtail, tall wheatgrass and *AC Saltlander* had greatest biomass at moderately saline areas (Table A.2). Alfalfa, as expected, produced lowest amount of forage biomass relative to other species tested across the range of salinity levels (Table A.2).

#### 2014 Forage Biomass

There was a high degree of variability in forage species biomass across the salinity gradient and among replicates, likely due to increased salinity levels in the demonstration area (discussed in next section) and possibly winterkill. Forage biomass production across the salinity gradient three years after establishment was not consistent with 2012 biomass results; generally, grass species biomass production, as a percentage of biomass produced in non-saline areas, decreased from 2012 to 2014 sampling dates.

Tall wheatgrass and *Saline Master* appeared to be most consistent in terms of biomass production across the salinity gradient (Table A.1). Tall fescue, *AC Saltlander* and *NewHy* also maintained relatively consistent biomass production across the salinity gradient (Table A.1). Alfalfa species, again did not perform well as salinity levels increased to moderately saline levels (Table A.1). Comparing relative total forage biomass produced among forages, surprisingly, alfalfa varieties produced most biomass of all species in non-saline and slightly saline areas (Table A.3). These results are very different than 2012, where alfalfa performed poorly compared to the grass species, but we suspect it was likely a result of the mature, established alfalfa stand reached maximum productivity after the first year. *Saline Master, AC Saltlander* and *NewHy* were consistent in relative biomass production in the slightly- and moderately saline areas (Table A.3).

#### Changes in Soil Salinity

EM38 measurements produce two maps: the horizontal map shows the bulk electrical conductivity of the soil for the 0-75 cm depth increment and the vertical map shows the bulk electrical conductivity of the soil for the 0-150 cm depth increment. We can thus compare surface- versus sub-soil salinity. The vertical maps indicate that the majority of the sub-soil in the demonstration area was slightly to moderately saline at both 2011 and 2014 sampling dates (Figure B.1 and C.1). Although does not appear to be much change in sub-surface salinity over time, the horizontal maps indicate the demo area surface soil became increasingly saline from 2011 and 2014 (Figure. B.2 and C.2). The majority of the area was non-saline at the beginning of the demonstration, with a gradual salinity gradient, extending to a very narrow area of severely saline soil to the east end of the demonstration area (Figure C.2). The 2014 horizontal map (Figure B.2) reveals the moderately to severely saline areas were enlarged since 2011.

The water table level and precipitation (at both local and regional scales) affect water and salt movement in the soil profile. Soil salinity is the result of a higher water table in the area of discharge in the local watershed. Higher than average precipitation, resulting in higher soil moisture levels in areas of recharge can increase ground water levels. Accumulated precipitation data over the three years the demonstration was established indicates the level of precipitation was close to the longer term normal for the area (Figure D.1). However, the soil salinity at the Scott Research Farm is related to the discharge from the Phippen Aquifer. The observation well located at Unity SK shows an elevated water level over the past five years (Figure D.2), indicating that the cumulative excess precipitation in the entire watershed is likely contributing to the soil salinity at the Scott Research Farm. In addition, the demonstration area is located near the discharge area of the Scott lagoon, which may also contribute to elevated water table levels. Because soil salinity problems are related to soil water, it appears that our soil is at risk of salinity until a dry cycle can reduce inputs at recharge zones and reduce the ground water levels. Short-term perennial forages in this area may not be able to "reclaim" saline soils, but saline tolerant forages may allow those areas of the field to remain productive under years of more severe salinity. Perennial forages established in these area can still be used to supress weeds and be used for animal feed. As perennial forages generally use more water over the growing season than annual crops, they can be used to utilize excess groundwater and maintain lower water table levels, reducing the risk of enlarging saline areas within a field.

#### **Conclusions and Recommendations**

Over the short duration of this demonstration, perennial forage establishment did not reduce surface soil salinity. However, the increase in soil salinity at the Scott Research Farm is likely due to inherent watershed soil hydrological processes. Nevertheless, using saline-tolerant perennial forages can provide improve the productivity of saline areas by providing other benefits such as weed suppression and forage biomass production. In this demonstration, tall wheatgrass, creeping foxtail, *AC Saltlander, Saline Master* and *NewHy* all satisfactorily colonized slightly and moderately saline areas, whereas alfalfa species did not. Three years after establishment, alfalfa species generally produced the most biomass in non- to slightly-saline areas. *AC Saltlander, Saline Master*, and *NewHy* also provided relatively stable

biomass production in slightly- to moderately-saline areas and had relatively high biomass production in the areas as well. When selecting an appropriate perennial forage species to establish in saline areas of the field, it is important to select a species that will best suit your unique soil salinity levels and forage biomass production requirements. Additional resources may assist you in your selection:

Saskatchewan Agriculture: The Nature and Management of Salt-Affected Land in Saskatchewan Alberta Agriculture: Perennial Forages for Saline Seeps Sask Forage Council Factsheet: Revegetation of Saline Soils using Salt Tolerant Grasses Sask Forage Council: Interactive Tool to Assist in the Selection of Suitable Forage Species

#### **Supporting Information**

#### Acknowledgements

We would like to express our gratitude to the Ministry of Agriculture and the ADOPT program for the funding support for this project. We would like to acknowledge Sherrilyn Phelps, Eric Johnson, Anne Kirk, Tristan Coehlo, Larry Sproule, and summer staff for technical assistance with project development and implementation. The demonstration was featured at the 2012 and 2014 Scott Field Day. This report will be distributed through WARC's website and included in WARC's annual report.

### Appendices

Appendix A. Perennial forage biomass production across a salinity gradient in 2012 and 2014

Appendix B. EM38 maps and soil analysis from demonstration area in 2014

Appendix C. EM38 maps from demonstration area in 2011

Appendix D. Climate and hydrology data

Appendix E. Photographs of perennial forages in June 2014

Appendix F. Photographs of perennial forages in august 2012

#### Abstract

#### Abstract/Summary

Saline areas of arable annual crop land are of concern for many Saskatchewan farmers: these areas can negatively impact establishment, growth and yield of many crops. Persistent salt tolerant weeds, often invade saline areas of the field, affecting the productivity of the rest of the field. Establishing a perennial forage in saline areas may not only supress weeds, but also provide valuable source of forage for livestock. Perennial forages may provide soil reclamation benefits by lowering the local water table, reducing the risk of developing or enlarging saline areas. Farmers often have mixed results in terms of successful forage establishment, competitiveness with weeds and biomass production. The objectives of this demonstration, was to determine 1. How various species of perennial forages establish under various levels of soil salinity, 2. how much biomass the forages produced in each area of the salinity gradient, after three years of growth and 3. if the established forages reduced the soil salinity levels in the demo area. Over the short duration of this demonstration, perennial forage establishment did not reduce surface soil salinity. However, the increase in soil salinity at the Scott Research Farm is likely due to inherent watershed soil hydrological processes. Nevertheless, using saline-tolerant perennial forages can provide improve the productivity of saline areas by providing other benefits such as weed suppression and forage biomass production. In this demonstration, tall wheatgrass, creeping foxtail, AC Saltlander, Saline Master and NewHy all satisfactorily colonized slightly and moderately saline areas, whereas alfalfa species did not. Three years after establishment, alfalfa species generally produced the most biomass in non- to slightly-saline areas. AC Saltlander, Saline Master, and NewHy also provided relatively stable biomass production in slightly- to moderately-saline areas and had relatively high biomass production in

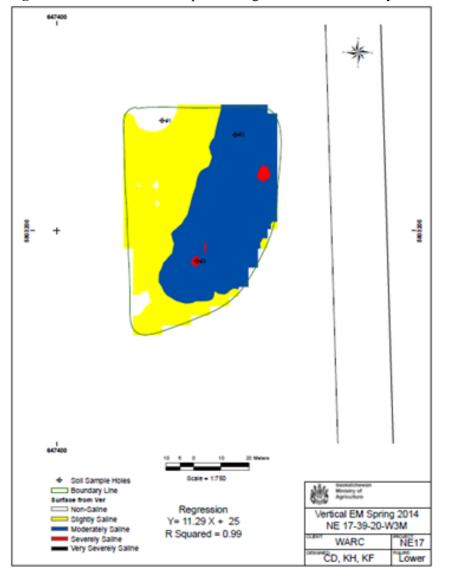
the areas as well. It is important farmers select appropriate perennial forage varieties to suit their unique soil salinity level and requirements for forage production. The demonstration was featured at the 2012 and 2014 Scott Field Day which hosted approximately 175 attendees. This report will be distributed through WARC's website and included in WARC's annual report.

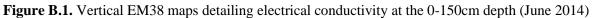
### Appendix A

## Perennial Forage Biomass Production across a Salinity Gradient in 2012 and 2014

|                                  |            | Sa      | linity Gradien | t                        |      |  |
|----------------------------------|------------|---------|----------------|--------------------------|------|--|
|                                  | Non-Saline | Slightl | y Saline       | <b>Moderately Saline</b> |      |  |
| Perennial Forage                 |            | 2012    | 2014           | 2012                     | 2014 |  |
| Alfalfa c.v. Rambler             | 100        | 39      | 110            | 15                       | 20   |  |
| Alfalfa c.v. Halo                | 100        | 55      | 60             | 4                        | 15   |  |
| Alfalfa c.v. Rugged              | 100        | 77      | 66             | 13                       | 4    |  |
| Tall Fescue c.v. Kokanee         | 100        | 78      | 63             | 32                       | 65   |  |
| Tall wheatgrass                  | 100        | 101     | 100            | 101                      | 64   |  |
| Smooth brome <i>c.v.</i> Carlton | 100        | 65      | 31             | 45                       | 74   |  |
| Creeping Foxtail                 | 100        | 95      | 34             | 106                      | 48   |  |
| Saline Master                    | 100        | 102     | 94             | 76                       | 127  |  |
| AC Saltlander                    | 100        | 95      | 83             | 106                      | 33   |  |
| NewHy                            | 100        | 109     | 77             | 70                       | 46   |  |

Table A.1. Biomass production across salinity gradient as a percentage of biomass from non-saline area in 2012 and 2014


 Table A.2. Ranking of perennial forage in terms of highest to lowest biomass production (wet weight) in 2012


| Ranking       | Non-Saline                | Slightly Saline           | <b>Moderately Saline</b>  |  |  |
|---------------|---------------------------|---------------------------|---------------------------|--|--|
| Most Biomass  | Tall Fescue c.v. Kokanee  | Tall Fescue c.v. Kokanee  | Creeping Foxtail          |  |  |
| <b>↑</b>      | Smooth brome c.v. Carlton | Creeping Foxtail          | Tall wheatgrass           |  |  |
|               | Saline Master             | Saline Master             | AC Saltlander             |  |  |
|               | NewHy                     | Tall wheatgrass           | Saline Master             |  |  |
|               | Alfalfa c.v. Halo         | NewHy                     | Tall Fescue c.v. Kokanee  |  |  |
|               | AC Saltlander             | Smooth brome c.v. Carlton | NewHy                     |  |  |
|               | Tall wheatgrass           | AC Saltlander             | Smooth brome c.v. Carlton |  |  |
|               | Creeping Foxtail          | Alfalfa c.v. Halo         | Alfalfa c.v. Halo         |  |  |
| ↓<br>↓        | Alfalfa c.v. Rugged       | Alfalfa c.v. Rugged       | Alfalfa c.v. Rambler      |  |  |
| Least Biomass | Alfalfa c.v. Rambler      | Alfalfa c.v. Rambler      | Alfalfa c.v. Rugged       |  |  |

| Table A.3. Ranking of perennial forage in terms of highest to lowest biomass production (dry | 7 |
|----------------------------------------------------------------------------------------------|---|
| weight) in 2014                                                                              |   |

| Ranking       | Non-Saline                | Slightly Saline           | <b>Moderately Saline</b>  |  |
|---------------|---------------------------|---------------------------|---------------------------|--|
| Most Biomass  | Alfalfa c.v. Rugged       | Alfalfa c.v. Rambler      | Smooth brome c.v. Carlton |  |
| Ť             | Alfalfa c.v. Rambler      | Alfalfa c.v. Rugged       | Saline Master             |  |
|               | Alfalfa c.v. Halo         | AC Saltlander             | AC Saltlander             |  |
|               | Smooth brome c.v. Carlton | Alfalfa c.v. Halo         | NewHy                     |  |
|               | AC Saltlander             | NewHy                     | Tall Fescue c.v. Kokanee  |  |
|               | NewHy                     | Tall Fescue c.v. Kokanee  | Creeping Foxtail          |  |
|               | Creeping Foxtail          | Saline Master             | Alfalfa c.v. Rambler      |  |
|               | Tall Fescue c.v. Kokanee  | Tall wheatgrass           | Tall wheatgrass           |  |
| Ļ             | Saline Master             | Smooth brome c.v. Carlton | Alfalfa c.v. Halo         |  |
| Least Biomass | Tall wheatgrass           | Creeping Foxtail          | Alfalfa c.v. Rugged       |  |

### Appendix B EM38 Maps and Soil Analysis from demonstration area in 2014





| Salinity Level       | EC (dS/m) | EM38 |
|----------------------|-----------|------|
| Non-Saline           | 0-2       | 15   |
| Slightly Saline      | 2-4       | 41   |
| Moderately Saline    | 4-8       | 92   |
| Severely Saline      | 8-16      | 194  |
| Very Severely Saline | >16       | >194 |

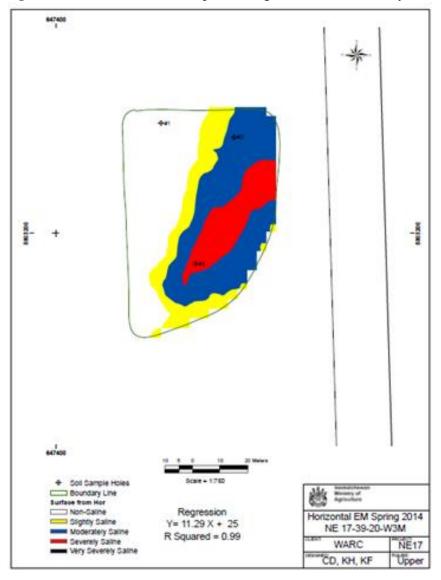



Figure B.2. Horizontal EM38 maps detailing electrical conductivity at the 0-75cm depth (June 2014)

Table B.2. Electrical conductivity (dS/m) ranges for regressed EM38 readings at from the 0-75cm depth

| Salinity Level       | EC (dS/m) | EM38 |
|----------------------|-----------|------|
| Non-Saline           | 0-2       | -8   |
| Slightly Saline      | 2-4       | 21   |
| Moderately Saline    | 4-8       | 80   |
| Severely Saline      | 8-16      | 197  |
| Very Severely Saline | >16       | >197 |

| Hole<br>No. | EM 38<br>Reading                  | Depth<br>(cm) | Texture | Cl-<br>(mg/l) | Ca++<br>(mg/l) | Mg++<br>(mg/l) | K+<br>(mg/l) | Na+<br>(mg/I) | SO <sub>4</sub> =<br>(mg/I) | S.A.R. | % SAT | E.C.<br>(mS/cm) | рН  |
|-------------|-----------------------------------|---------------|---------|---------------|----------------|----------------|--------------|---------------|-----------------------------|--------|-------|-----------------|-----|
| 1           | V 46 H 30                         | 0 - 30        | VL      | 63            | 514            | 254            | 103          | 186           | 2420                        | 1.7    | 59    | 4.2             | 5.7 |
|             | Moderate                          | 30 - 60       | SCL     | 88            | 509            | 492            | 15           | 431           | 3460                        | 3.3    | 43    | 5.5             | 7.1 |
|             | Salinity                          | 60 - 90       | SC      | 78            | 290            | 602            | 23           | 437           | 3430                        | 3.4    | 43    | 5.7             | 7.9 |
|             | Non Sodic                         | 90 - 120      | SCL     | 44            | 113            | 232            | 20           | 203           | 1280                        | 2.5    | 44    | 2.7             | 8.1 |
| 2           |                                   | 0 - 30        | VL-VCL  | 142           | 436            | 1470           | 21           | 1040          | 7870                        | 5.4    | 57    | 10.7            | 6.5 |
|             | V 83 H 85                         | 30 - 60       | SCL     | 208           | 477            | 1690           | <20          | 915           | 8590                        | 4.4    | 46    | 11.5            | 7.7 |
|             | Severe Salinity<br>Non Sodic      | 60 - 90       | SC      | 219           | 500            | 1140           | 29           | 472           | 6290                        | 2.7    | 44    | 8.4             | 8.0 |
|             | Non Sourc                         | 90 - 120      | SCL     | 101           | 475            | 580            | 30           | 263           | 3590                        | 1.9    | 48    | 5.5             | 7.9 |
| 3           |                                   | 0 - 30        | SCL     | 126           | 467            | 1390           | 25           | 1570          | 8540                        | 8.2    | 50    | 11.6            | 8.0 |
|             | V 134 H 140<br>Severe Salinity    | 30 - 60       | VCL     | 200           | 507            | 955            | <20          | 1170          | 6820                        | 7.1    | 50    | 9.6             | 8.2 |
|             | Severe Sannity<br>Slight Sodicity | 60 - 90       | SCL     | 214           | 491            | 658            | <20          | 891           | 5210                        | 6.2    | 45    | 8.0             | 8.2 |
|             | Signt Sourcity                    | 90 - 120      | SC      | 156           | 218            | 357            | 14           | 542           | 2750                        | 5.3    | 45    | 4.9             | 8.2 |

Table B.3. Soil sample lab analysis results for holes 1-3 from June 2014 sampling date

## Appendix C EM38 Maps from demonstration area in 2011

Figure C.1. Vertical EM38 maps detailing electrical conductivity at the 0-150cm depth (July 2011)

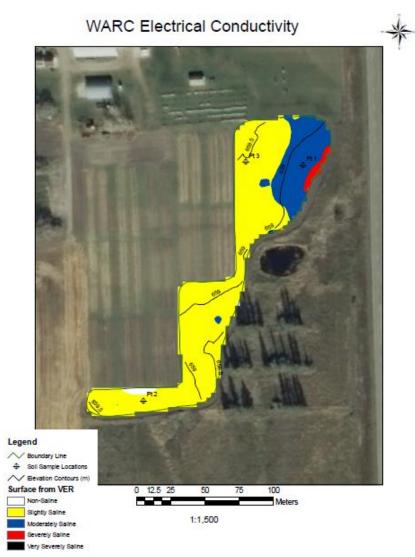
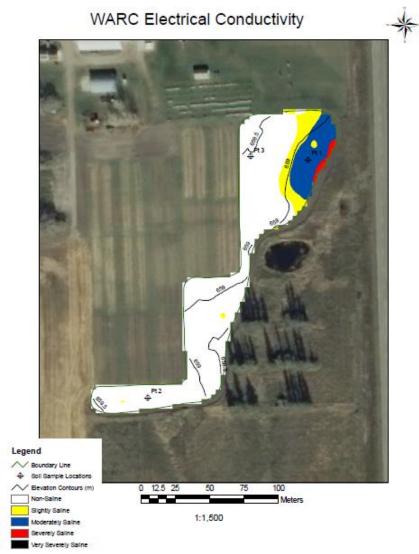




Figure C.2. Horizontal EM38 maps detailing electrical conductivity at the 0-75cm depth (July 2011)



#### Appendix D Climate and Hydrology Data

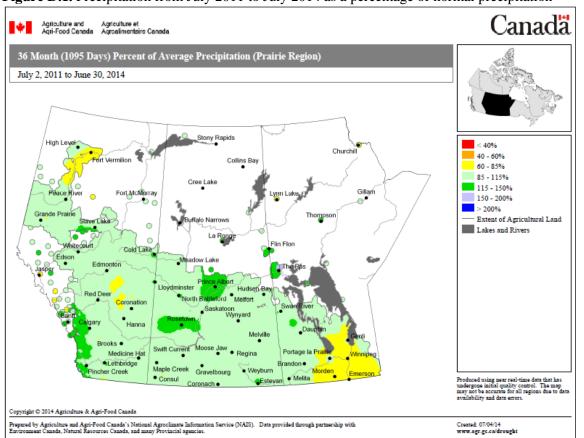
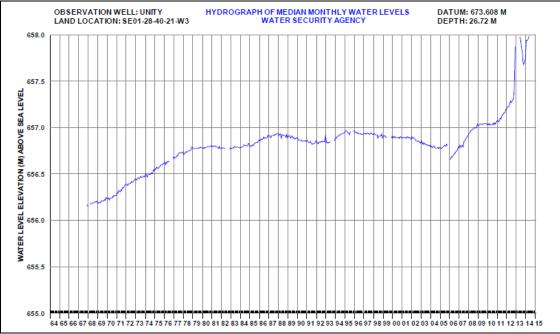




Figure D.1. Precipitation from July 2011 to July 2014 as a percentage of normal precipitation

**Figure D.2.** Hydrograph for WSA Observation well at Unity SK - located in the Phippen aquifer at SE1 28-40-21 W3



# Appendix E Photographs of Perennial Forages in June 2014

Figure E.1. AC Saltlander



Figure E.3 Tall Fescue



Figure E.5. NewHy



Figure E.2. Saline Master



FigureE.4. Creeping Foxtail



Figure E.6. Tall Wheatgrass



Figure E.7. Smooth Brome





Figure E.8. Alfalfa c.v. Rambler







Appendix F Photographs of Perennial Forages in August 2012



Figure F.2. Saline Master



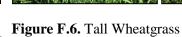

Figure F.3. Tall Fescue



Figure F.4. Creeping Foxtail



Figure F.5. NewHy





## Figure F.7. Smooth Brome



Figure F.8. Alfalfa *c.v.* Rambler



Figure F.9. Alfalfa c.v. Halo



Figure F.10. Alfalfa c.v. Rugged

