Seeding Rates for Precision Seeded Canola

Laryssa Grenkow, Western Applied Research Corporation
Eric Johnson, Agriculture and Agri-Food Canada
Stewart Brandt, Northeast Agricultural Research Foundation
Chris Holzapfel, Indian Head Agricultural Research Foundation
Lana Shaw, Southeast Agricultural Research Foundation
Anne Kirk, University of Manitoba
Sherrilyn Phelps, Saskatchewan Pulse Growers
Canola: Relationship between Plant Density & Seed Yield

- Yields are generally maximized at plant populations above 50 plants m$^{-2}$
- Canola can compensate at low plant populations by increasing branching to maintain yield over a range of plant densities
- Uniformity of plants show to be important when plant density decreased
Figure 1. Uniform stands yield more, especially at lower plant densities.

Seed Metering Systems for Air-Carts

UltraPro Roller

Valmar Roller
Study Objectives

• Assess seedling uniformity of the UltraPro Roller compared to a traditional Valmar Roller

• Determine if differences in uniformity affect minimum plant population require to reach maximum yield potential of canola
Target 10 seeds m$^{-2}$

Target 20 seeds m$^{-2}$

Target 40 seeds m$^{-2}$

Target 80 seeds m$^{-2}$

Target 160 seeds m$^{-2}$

Target 320 seeds m$^{-2}$
Seeding Rate Effect: **
Roller Type Effect: *
Seeding Rate x Roller Type Interaction: NS

10% improved emergence with Valmar likely due to UltraPro metering seed more accurately – releasing fewer seeds.
Broken-Line Regression:
Standard Error of Distance Between Plants vs. Plant Density

High Yielding Sites
Low Yielding Sites
Broken-Line Regression: Seed Yield vs. Plant Density by Roller Type

High Yielding Sites

Low Yielding Sites

Plants m2

Seed Yield (kg/ha)

Valmar UltraPro
Preliminary Conclusions

• Lowest seeding rate was likely not metered out accurately
 • It appears the UltraPro may more accurately meter out seed than the Valmar
• Increasing plant population rapidly decreased variability in distance between seedlings
 • Plant uniformity was affected by plant density, not roller type
• Plant uniformity does not appear to be as important as plant density/other factors in determining canola yield potential
 • High yielding sites – needed 38 plants m\(^{-2}\) to reach maximum yield, but uniformity was maximized at 27 plants m\(^{-2}\)
 • Low-yielding sites – needed only 17 plants m\(^{-2}\) to reach maximum yield, but uniformity was maximized at 38 plants m\(^{-2}\)
Acknowledgements

• Funding Partner – Saskatchewan Canola Development Commission
• Site Research Managers & Assistants
 • Chris Holzapfel & Christiane Catellier, Indian Head Agricultural Research Foundation
 • Stu Brandt & Jessica Pratchler, Northeast Agricultural Research Foundation
 • Lana Shaw, Southeast Agricultural Research Foundation
 • Anne Kirk & Tristan Coelho, Western Applied Research Corporation
• Eric Johnson for assistance with project development and data analysis