

Lime Application and Soil pH

Crop Opportunity Update March 09, 2016, North Battleford

Gazali Issah

Field Research Manager (WARC) (306) 247-2001

gazali.issah@warc.ca

Acknowledgements

Agriculture and Agri-Food Canada

Agriculture et Agroalimentaire Canada

pН

- Degree of acidity or alkalinity (0-14 scale)
 pH = -log [H⁺]
 Each unit of pH change = 10X change in H⁺
- Impacts soil chemistry and biological properties
 - Influences root uptake of nutrients and toxins
 - Impacts activity of soil microorganisms
 - Alters activity of plant pathogens
- Soil pH change is a complex phenomenon!!!
 Depends on both site and management factors

Background

- Using ammonium based N fertilizers in crop production has been shown to acidify soils via:
 - removal of base cations such as Ca²⁺ and Mg²⁺ through crop harvest
 - N fertilizer application and N transformation(nitrification), a process that releases H⁺ into the soil
 - NO₃⁻ not taken up by the growing crop (leach to deeper soil layers taking Ca²⁺ and Mg²⁺)
- Recommendations of the optimal level of N to apply based on "yield goal"
 - typically ignore the cost of lime created by N fertilization

N fertilizers and cost of lime?

Nitrogen source	Composition	Lir (Ib	ne requir CaCO ₃ /lb	ed N)
Anhydrous ammonia	82-0-0		1.8	
Urea	46-0-0		1.8	
Ammonium nitrate	34-0-0		1.8	
Ammonium sulfate	21-0-0-24		5.4	
Monoammonium phosphate	10-52-0		5.4	
Diammonium phosphate	18-46-0		3.6	
Triple super phosphate	0-46-0		0.0	
Adapted from Havlin et al., 19				

Nitrogen Source	Pound of Aglime per Pound of N				
Ammonium Sulfate		7			
Ammonium Phosphates		7			
Anhydrous Ammonia		4			
Urea		4			
28% Solution		4			
Ammonium Nitrate		4			
Approximate amount. Adapted from Modern Corn Production.					
Iowa State University					

Effect of N Application on Soil pH

Ib N/acre/year	Soil pH	
0	6.1	
40	6.1	
80	6.0	
120	6.0	
160	5.8	
200	5.7	

Ammonium Nitrate applied each year for 5 years, 7 in. incorporation. Plano silt loam soil. Walsh, 1965. Fert. & Lime Conf. UW-Madison.

Iowa State University

WARC

Critical pH for yield reductions

(Mahler and McDole, 1987, results of 5 year study)

Critical pH for yield reductions

(Mahler and McDole, 1987, results of 5 year study)

Summary of Critical pH

Crop	Critical pH
Winter and Spring Cereals	5.2 to 5.4
Grain Legumes	5.5 to 5.6
Lentils	5.6
Peas	5.5
Canola (winter)	5.5 to 5.8
Alfalfa	5.7
(Mahler and McDole, 1987; Brown et a	I., 2009; Lofton et al., 2010)

Management solutions -liming

- Neutralizes toxic elements: Al, Mn, H
- Improves overall nutrient availability
- Increases microbial activity
- Increases the percentage of non-acid cations(Ca, Mg, K, Na)
- Improves Ca, Mg availability
- Magnitude and duration depends on:
 - □ initial soil pH
 - □ fertilizer additions and
 - Crops grown

Why this study?

- Traditional Aglime sources are required in excess of over 1000 lbs/ac to achieve any desirable soil pH change
 - benefits of liming come at a significant cost to the farmer
- SuperCal 98G has influenced soil pH at rates as low as 400 lbs/ac to give comparable yield
- Soil amendment benefits for up to five successive years

Objectives

- The objectives of this study were to demonstrate:
 - □ the effects of application of SuperCal 98 on soil pH
 - whether SuperCal 98 application can provide economic return to producers

Study Site

Study site: Scott Study year: 2015

Experimental Setup

- Experimental Design
 - Split-plot in RCBD with four replications
 - Main plot (crop) and Sub-plot (lime)
- Seeding rate: 300 (wheat) and 150 (canola) seeds/m²
- Fertilizer and lime application
 - Urea and AS applied mid-row, MAP seed-placed according to soil test recommendation
 - Lime (0-700 lbs/ac) applied in seed-row, 7 days to seeding
- Plot size: 2 x 10 m

Plots Layout

		(Canola	1						Wheat	t		
PLOT	401	402	403	404	405	406	PLOT	407	408	409	410	411	T
TRT	1	4	5	2	3	6	TRT	11	7	12	8	10	Ī
			•	•		1			•	•	•		
PLOT	301	302	303	304	305	306	PLOT	307	308	309	310	311	
TRT	4	6	1	2	3	5	TRT	12	9	7	10	11	
PLOT	201	202	203	204	205	206	PLOT	207	208	209	210	211	
TRT	4	5	6	3	1	2	TRT	8	7	11	9	12	
PLOT	101	102	103	104	105	106	PLOT	107	108	109	110	111	
TRT	1	2	3	4	5	6	TRT	7	8	9	10	11	

Data & Analysis

- Data was collected on
 - Plant density
 - NDVI
 - Yield
 - Soil pH (Initial, In-crop and Postharvest)
- Data was analysed using PROC MIXED in SAS 9.3

Preliminary Results

- Plant density, NDVI (4 leaf stage) and yield were all not affected by lime rate and crop type
- NDVI (prior to bolting) was affected by crop but not lime rate (canola > wheat)
 - crop physiology, four leaf stage vs bolting

Lime (lbs/ac) vs soil pH

Soil pH vs Yield

Weather Conditions

NET Gain (\$/ac)

Liming rate (lbs/ac)	0	300	400	500	600	700
Yield (bu/ac)	46	44	53	45	45	48
Price (\$/bu)	10.16	10.16	10.16	10.16	10.16	10.16
Gross Income (\$/ac)	467.36	447.04	538.48	457.20	457.20	487.68
Seed cost (\$/ac)	56.00	56.00	56.00	56.00	56.00	56.00
Fertilizer cost (\$/ac)	78.68	78.68	78.68	78.68	78.68	78.68
Cost of lime (\$/ac)	0.00	759.00	1012.00	1265.00	1518.00	1771.00
Total Cost (\$/ac)	134.68	893.68	1146.68	1399.68	1652.68	1905.68
NET Gain (\$/ac)	<u>332.68</u>	<u>-446.64</u>	<u>-608.20</u>	<u>-942.48</u>	<u>-1195.48</u>	<u>-1418.00</u>
Liming rate (lbs/ac)	0	300	400	500	600	700
Yield (bu/ac)	58	60	60	56	59	60
Price (\$/bu)	5.36	5.36	5.36	5.36	5.36	5.36
Gross Income (\$/ac)	310.88	321.60	321.60	300.16	316.24	321.60
Seed cost (\$/ac)	23.25	23.25	23.25	23.25	23.25	23.25
Fertilizer cost (\$/ac)	71.63	71.63	71.63	71.63	71.63	71.63
Cost of lime (\$/ac)	0.00	759.00	1012.00	1265.00	1518.00	1771.00
Total Cost (\$/ac)	94.88	853.88	1106.88	1359.88	1612.88	1865.88
NET Gain (\$/ac)	<u>216.00</u>	<u>-532.28</u>	<u>-785.28</u>	<u>-1059.72</u>	<u>-1296.64</u>	<u>-1544.28</u>

Reasons

- From an economic perspective, liming is a capital investment rather than an operating input because of its long-term effect
- 2015 growing conditions (low moisture)
- Critical pH for the crops
 - Cereals: 5.2 to 5.6 compared to (5.5 to 6.5??)
 - Canola: 5.5 to 5.8 compared to (5.2 to 5.8??)
- Economic model: lime is necessary to increase pH to reach maximum yield
 - Subsequent applications are done to maintain that level based on cost of lime

Corn and soybean vs Liming

- pH change was only visible after the year of application
 - 0 6 inch
 - Aglime @ 3 ton ECCE/ac

Lime application (3 ton ECCE/acre) on soil pH for two different depths for four no-till trials one and two years after liming

Is it still worth an Investment??

		Lir	ne requir	ed
Nitrogen source	Composition	(lb	CaCO ₃ /lb	N)
Anhydrous ammonia	82-0-0		1.8	
Urea	46-0-0		1.8	
Ammonium nitrate	34-0-0		1.8	
Ammonium sulfate	21-0-0-24		5.4	
Monoammonium phosphate	10-52-0		5.4	
Diammonium phosphate	18-46-0		3.6	
Triple super phosphate	0-46-0		0.0	
Adapted from Havlin et al., 19				

Nitrogen Source	Pound of Aglime per Pound of N				
Ammonium Sulfate		7			
Ammonium Phosphates		7			
Anhydrous Ammonia		4			
Urea		4			
28% Solution		4			
Ammonium Nitrate		4			
Approximate amount. Adapted from Modern Corn Production.					
Iowa State University					

Preliminary conclusions!!!

- Crops vary in their response to soil pH
 - respond to lime applications only if pH levels are limiting crop performance
 - subsequent applications are done to maintain that level based on cost of lime
- Liming is a *capital investment* rather than an operating input
- Lime application affects soil pH and yield over time

Take Home Message

- Liming is a *capital investment* rather than an operating input
- Each Ib. of fertilizer applied has a corresponding lime cost
- Effects of lime on pH change depends on so many variables!!
- Producers should be aware rather than worry!!!

For more information visit:

www.warc.ca

Contact Details:

Gazali Issah (Research Manager)

(306) 247-2001 gazali.issah@warc.ca

