

Seeding Rate, Row Spacing & Seeding Speeds Crop Opportunity & Scott Research Update

March 8th, 2012

Sherrilyn Phelps, MSc., P.Ag., CCA

Regional Crop Specialist – North Battleford Saskatchewan Ministry of Agriculture

Topics to Cover

- Seeding rates
- Row spacing
- Seeding speeds

Seeding Rates

- Why rates are important?
 - Maximize yield potential
 - Maximize net revenue
 - Weed competition
 - Crop uniformity
 - Shorten crop maturity
 - Lodging

But really...

- Seeding rates are
 - The one thing we have the most control over
 - Simple to calculate (do ahead so know targets)
 - Most impact on crop establishment
 - Easy to set equipment for and calibrate
 - Important for return on investment

Plant Density is more important than actual seeding rate!!!

Gone....bushel and a peck!

S. Phelps

Typical Plant Density Response Curve

Crop Opportunity

2012

Canola

Camelina Yield

Camelina Net Return

Target Plant Population

Crop	Target (#/m2)
HRS Wheat CPS Wheat	250
Durum SWS Wheat Barley	210-250
Oat	215-320
Pea	85
Lentil	105-147

Crop	Target (#/m2)
Canola	100
Flax	300-400
Camelina	114 – 173
B. Carinata	80 – 170

Calculating Optimum Seeding Rates

- Focus on plant densities and adjust seeding rates to obtain desired plant population
- Calculate high and low range so easier to calibrate equipment
- Need to know:
 - Germination (%)
 - 1000 kernel weight (grams)
 - Expected emergence (%)
 - Population you want to target (plants/m2)

Formula

Seeding rate (kg/ha) = target population x TKWexpected seedling survival

TKW

- Thousand kernel weight (grams) = weight of 1000 kernels
- Can do yourself or get done at lab
- Some seed suppliers will have the TKW
- Why important?
 - Seeds vary in size variety, environment

***	Saskatchewan
	Ministry of
	Agriculture

Lentil Variety	Class	TKW (g)	lb/ac	\$/acre
CDC Sedley	LG	68	100	\$ 34.90
CDC Glamis	LG	60	88	\$ 30.80
CDC Imagreen	MG	57	84	\$ 29.26
CDC Meteor	MG	51	75	\$ 26.18
CDC Milestone	SG	37	54	\$ 18.99
Eston	SG	33	48	\$ 16.94
CDC Redberry	SR	42	62	\$ 21.56
CDC Imperial	ESR	30	44	\$ 15.40
Germination >95%, target 12				

The effect of seed size on yield density relationship in red lentil

Effect of seed size = \$

Pea Variety	Seed size	Seed rate		
	(g/1000)	Kg/ha	lb/ac	\$/acre
Alfetta	290	290	259	\$ 51.71
Topeka	260	260	232	\$ 46.36
Eclipse	250	250	223	\$ 44.58
CDC Bronco	230	230	205	\$ 41.01
SW Cabri	210	210	187	\$ 37.45
Miser	190	190	169	\$ 33.88

Targeting 85 plants/m2, using 85% emergence rate (95% or > emergence), \$12/bushel for seed

(Yantai Gan, AAFC Swift Current)
S. Phelps

Canola

	150					=
		Plant P	opulati	on (plai	nts/m2)	
	10	20	40	60	80	100
TKW	TKW seeding rate needed (kg/ha)					
3	0.6	1.2	2.4	3.6	4.8	6
4	0.8	1.6	3.2	4.8	6.4	8
5	1	2	4	6	8	10

Using 50% emergence rate (5 lbs/acre = 5.6 kg/ha)

S. Phelps

TKW (grams)

Crop	TKW
	(grams)
HRS Wheat	31 – 38
CPS Wheat	39 – 50
SWS Wheat	34 – 36
Barley 2R	40 – 50
Barley 6R	30 – 45
Oat	30 - 45

Crop	TKW (grams)
B. Rapa	2 – 3
B. Napus	2.5 – 5.5
Flax	5 – 6.5
Pea	125 – 300
Lentil	30 – 80
Camelina	1

Expected emergence

- How many of the viable seeds actually survive to produce a plant?
- Rarely 100%
- Damaged by handling, diseases, insects, adverse conditions, poor vigor.....
- Percent emergence goes down as plant populations increase

Emergence decreases as seeding rates increase

Gan, 1998 to 2000, 2 locations

Davey, 2010 & 2011, 5 locations

Camelina

Crop	Expected Emergence
Cereals	80 to 90%
Pulses	80 to 95% (60 to 95)
Oilseeds	40 to 60%

Row Spacing

Impacts of Row Spacing

• Considerations: Wider Narrower

Soil disturbance less more

Residue clearance more room less room

Swathing weaker holds bette

Seed placed fert. less safety more safety

Fertilizer – mid further closer

Fertilizer – side > crop adv

Impacts of Row Spacing

• Considerations:

Moisture

Sunlight

Weed control

Disease

Horsepower needed

Cost

Wider Narrower

more evap. Less evap.

> reflected > intercepted

less comp. more comp.

open canopy closed canopy

less more

less more

Row Spacing

- Belief that there is no impact of row spacing
- Why...
 - Equipment limitations = hard to do research
 - lots of research on row spacing but ...
 - limited to narrow range
 - Often only two spacings compared (20 vs 30 cm)

Alberta Agriculture 1998-2000

Canola

Yield Response in Canola

Canola Council of Canada Production Centres

Row Spacing

Effect of Equipment

Seeding Speeds

Speed can affect:

- Seeding depth (uniformity between plants)
- Row burial (uniformity between rows)
- Seed and fertilizer separation
- Bunching and clumping in field
- Ultimately affect plant density

ADOPT Project 2011

OBJECTIVE

 To demonstrate the influence of opener type and seeding speed on canola emergence using field scale equipment

Locations

- 17 producers
 - Disc (2)
 - Knife (2)
 - Atom jet (3)
 - Paralink (3)
 - Seed Hawk (3)
 - Spoon (1)
 - Paired row (2)

Locations

- Wilkie, Scott, Leipzig (6)
- North Battleford
- Meadow Lake/Goodsoil (2)
- Rosthern
- Melfort (2)
- Tisdale (2)
- Star City
- Paddockwood
- Simpson

Data Collection

- Surface residue before and after seeding
- Video clips during seeding
- Plant counts at 7 and 21 DAS
- Seeding depth
- Yield

Surface Residue Measurements

Surface Residue

Disc Drills

Bourgault Paralink

3.5 mph

4.5 mph

6.0 mph

Effect of speed on residue

Not always negative....

Plant Density (21 DAS)

Simpson

Average 72 plants/m sq

Wilkie

All 13 sites (21 DAS)

Results to Date

- Not much impact of seeding speeds under good moisture conditions in 2011
- Need to do more next year...
- May be able to speed up if need to get a lot of acres done in short time as long as conditions are favorable.

Agronomy 101

- plant density is critical for maximum yields and net returns
 - Seeding rate is # 1 factor under our control
 - Seeding speed may be adjusted if short on time and conditions are good
 - Need more work on row spacing....

Thank You! • WARC

- AAFC
- Seager Wheeler
- ADOPT

ADOPT

SCIC

